

TinyML Made Easy Motion Classification

Creating a TinyML Anomaly Detection & Motion Classification project with the Seeed XIAO ESP32S3 and IMU MPU6050

MJRoBot (Marcelo Rovai)

Published May 16, 2023 © MIT

https://www.hackster.io/mjrobot/exploring-machine-learning-with-the-new-xiao-esp32s3-6463e5

Introduction

In my tutorial, TinyML Made Easy: Image Classification, we explored Image Classification on the new tiny device of the Seeed XIAO family, the ESP32S3 Sense. The Sense has a camera and a mic incorporated, but what happens if you want another type of sensor as an IMU? No problem! One great advantage of the XIAO ESP32S3 is its several pins available as an I2C bus (SDA/SCL pins).

FRONT

Seeed Studio

Installing the XIAO ESP32S3 Sense on Arduino IDE

Following my last tutorial, you should have the device installed on the Arduino IDE. If not, let's do a quick review:

On Arduino IDE, navigate to **File > Preferences**, and fill in the URL:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pag
es/package_esp32_dev_index.json

on the field ==> Additional Boards Manager URLs

	luger enize		
for each row			
com/arduino/package_seeeduino_boards	index.json		
tent.com/espressif/arduino-esp32/gh-p	ages/package_esp32_dev_inde	x.json	
l boards support URLs			
		OK	Cancel
	for each row com/arduino/package_seeeduino_boards_ atent.com/espressif/arduino-esp32/gh-p l boards support URLs	for each row com/arduino/package_seeeduino_boards_index.json ntent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_inde: I boards support URLs	for each row com/arduino/package_seeeduino_boards_index.json ntent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json I boards support URLs

Next, open boards manager. Go to **Tools** > **Board** > **Boards Manager...** and enter with *esp32*. Select and install the most updated package:

esp32 by Espressif Systems version 2 Boards included in this package: ESP32 Dev Board, ESP32-S2 Dev More Info	.0.8 INSTALLED Board, ESP32-S3 Dev Board, ESP32-C3 Dev Board.	

On Tools, select the Board (XIAO ESP32S3):

Last, but not least, select the **Port** where the ESP32S3 is connected.

That is it! The device should be OK. To be sure, run the Blink sketch.

Installing the IMU

You could select your IMU from several devices found in the market, such as ADXL362 (3-axis), MAX21100 (6-axis), MPU6050 (6-axis), LIS3DHTR (3-axis), or the LCM20600 (6-axis), which is part of the Seeed Grove - IMU 9DOF (Icm20600+AK09918).

For this project, we will use an IMU, the MPU6050 (or 6500), and a low-cost (less than 2.00 USD) 6-Axis Accelerometer/Gyroscope unit.

In conclusion, I will also comment about using the LCM20600

The MPU-6500 is a 6-axis Motion Tracking device that combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion ProcessorTM (DMP) in a small 3x3x0.9mm package. It also features a 4096-byte FIFO that can lower

the traffic on the serial bus interface and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode.

With its dedicated I2C sensor bus, the MPU-6500 directly accepts inputs from external I2C devices. MPU-6500, with its 6-axis integration, on-chip DMP, and run-time calibration firmware, enables manufacturers to eliminate the costly and complex selection, qualification, and system-level integration of discrete devices, guaranteeing optimal motion performance for consumers. MPU-6500 is also designed to interface with multiple non-inertial digital sensors, such as pressure sensors, on its auxiliary I2C port.

MPU6050

I2C - Accelerometer & Gyroscope - I2C/SPI

Usually, the libraries available are for MPU6050, but they work for both devices.

Connecting the HW

Connect the IMU to the XIAO according to the below diagram:

- MPU6050 SCL --> XIAO D5
- MPU6050 SDA --> XIAO D4
- MPU6050 VCC --> XIAO 3.3V
- MPU6050 GND --> XIAO GND

Image from author

Install the Library

Go to Arduino Library Manager and type MPU6050. Install the latest version.

			Library Mar	nager	
/pe All	Topic	All	٥	MPU6050	
MPU6050 by Electronic Cats MPU6050 Arduino More info	Library. MPU-6050 6-	axis accelerometer	r/gyroscope Ardul	no Library.	
					Version 0.6.0 💟 Install
MPU6050_IND					
by Ujjval rathod Read fall and mot <u>More Info</u>	ion detection of MPU	6050 can read acc	elerometer, gyro	scope and fall & r	motion detection data
by Ujjval rathod Read fall and mot <u>More Info</u> MPU6050_light	ion detection of MPU	6050 can read acc	elerometer, gyros	scope and fall & r	motion detection data
by Ujjval rathod Read fall and mot More info MPU6050_light by rfetick Arduino library fo tilt angles of the de More info	ion detection of MPU	6050 can read acc	elerometer, gyro he MPU6050. Re	scope and fall & i	motion detection data nd gyro data from MPU6050. Compute X and Y

Download the sketch MPU6050_Acc_Data_Acquisition.in:

<pre>/* * Based on I2C device class Rowberg <jeff@rowberg.net> * and Edge Impulse Data For https://docs.edgeimpulse.co *</jeff@rowberg.net></pre>	(I2Cdev) Arduino sketch for MPU6050 class by Jeff warder Exampe (Arduino) - m/docs/cli-data-forwarder
* Developed by M.Rovai @11M	ay23
*/	
<pre>#include "I2Cdev.h" #include "MPU6050.h"</pre>	
#include "Wire.h"	
<pre>#define FREQUENCY_HZ #define INTERVAL_MS</pre>	50 (1000 / (FREQUENCY_HZ + 1))
#detine ACC_RANGE	1 // 0: -/+2G; 1: +/-4G
<pre>// convert factor g to m/s2 #define CONVERT_G_TO_MS2</pre>	==> [-32768, +32767] ==> [-2g, +2g] (9.81/(16384.0/(1.+ACC_RANGE)))
static unsigned long last_i	nterval_ms = 0;

```
MPU6050 imu;
int16_t ax, ay, az;
void setup() {
   Serial.begin(115200);
   // initialize device
   Serial.println("Initializing I2C devices...");
   Wire.begin();
   imu.initialize();
   delay(10);
        Serial.println("IMU connected");
   delay(300);
   //Set MCU 6050 OffSet Calibration
   imu.setXAccelOffset(-4732);
   imu.setYAccelOffset(4703);
   imu.setZAccelOffset(8867);
   imu.setXGyroOffset(61);
   imu.setYGyroOffset(-73);
   imu.setZGyroOffset(35);
   /* Set full-scale accelerometer range.
   imu.setFullScaleAccelRange(ACC_RANGE);
void loop() {
     if (millis() > last_interval_ms + INTERVAL_MS) {
       last_interval_ms = millis();
       // read raw accel/gyro measurements from device
       imu.getAcceleration(&ax, &ay, &az);
```


Some comments about the code:

Note that the values generated by the accelerometer and gyroscope have a range: [-32768, +32767], so for example, if the default accelerometer range is used, the range in Gs should be: [-2g, +2g]. So, "1G" means 16384.

For conversion to m/s2, for example, you can define the following:

```
#define CONVERT_G_T0_MS2 (9.81/16384.0)
```

In the code, I left an option (ACC_RANGE) to be set to 0 (+/-2G) or 1 (+/- 4G). We will use +/-4G; that should be enough for us. In this case.

We will capture the accelerometer data on a frequency of 50Hz, and the acceleration data will be sent to the Serial Port as meters per squared second (m/s2).

When you ran the code with the IMU resting over your table, the accelerometer data shown on the Serial Monitor should be around: 0.00, 0.00, and 9.81. If the values are a lot different, you should calibrate the IMU.

The MCU6050 can be calibrated using the sketch: mcu6050-calibration.ino.

Run the code. The following will be displayed on the Serial Monitor:

) 😑 🔵 /dev/cu.	usbmodem1101
	Send
end any character to start sketch.	
PU6050 Calibration Sketch	
our MPU6050 should be placed in horizonta on't touch it until you see a finish mess	l position, with package letters facing up. age.
PU6050 connection failed	
eading sensors for first time	
alculating offsets	
	Path NIL& CP. (A) 115200 haved (A) Clear output

Send any character (in the above example, "x"), and the calibration should start.

Note that A message MPU6050 connection failed. Ignore this message. For some reason, imu.testConnection() is not returning a correct result.

In the end, you will receive the offset values to be used on all your sketches:

Take the values and use them on the setup:

```
//Set MCU 6050 OffSet Calibration
imu.setXAccelOffset(-4732);
imu.setYAccelOffset(4703);
imu.setZAccelOffset(8867);
imu.setXGyroOffset(61);
imu.setYGyroOffset(-73);
imu.setZGyroOffset(35);
```

Now, run the sketch MPU6050_Acc_Data_Acquisition.in:

Once you run the above sketch, open the Serial Monitor:

•••			/dev/cu.usbr	/dev/cu.usbmodem1101						
							Send			
Initia	lizing I	2C devices								
IMU Eri	ror									
-0.08	-0.11	19.55								
-0.03	-0.10	9.72								
-0.01	-0.07	9.73								
-0.03	-0.06	9.71								
-0.04	-0.07	9.71								
0.01	-0.10	9.66								
-0.01	-0.01	9.73								
-0.03	-0.06	9.67								
-0.01	-0.08	9.71								
-0.02	-0.07	9.76								
-0.03	-0.05	9.70								
0.00	-0.05	9.73								
-0.02	-0.08	9.71								
Autos	roll Show	timestamp	E	oth NL & CR	115200 bau		Clear output			

Or check the Plotter:

Move your device in the three axes, and you should see the variation on Plotter:

The TinyML Motion Classification model

For our tutorial, we will simulate mechanical stresses in transport. Our problem will be to classify four classes of movement:

- Maritime (pallets in boats)
- **Terrestrial** (palettes in a Truck or Train)
- Lift (Palettes being handled by Fork-Lift)
- Idle (Palettes in Storage houses)

So, to start, we should collect data. Then, accelerometers will provide the data on the palette (or container).

Case Study: Mechanical Stresses in Transport

From the above images, we can see that primarily horizontal movements should be associated with the "Terrestrial class, " Vertical movements with the "Lift Class, " no activity with the "Idle class, " and movent on all three axes to Maritime class.

Connecting the device to Edge Impulse

For data collection, we should first connect our device to the Edge Impulse Studio, which will also be used for data pre-processing, model training, testing, and deployment.

Follow the instructions here to install the Node.js and Edge Impulse CLI on your computer.

Once the XIAO ESP32S3 is not a fully supported development board by Edge Impulse, we should, for example, use the CLI Data Forwarder to capture data from our sensor and send it to the Studio, as shown in this diagram:

You can also capture your data "offline", storing them on an SD card or send data via Bluetooth or Wifi for your computer. In this video, you can learn alternative ways to send data to the Edge Impulse Studio.

Connect your device to the serial port and run the previous code to capture IMU (Accelerometer) data, "printing them" on the serial. This will allow the Edge Impulse Studio to "capture" them.

Go to the Edge Impulse page and create a project.

The maximum length for an Arduino library name is **63 characters**. Note that the Studio will name the final library using your project name and include "_inference" to it. In my case, the name that I choose at first will not work when I will try to deploy the Arduino library because it will result in 64 characters. So, I need to change it, taking out the "-anomaly-detection" part.

Next, start the CLI Data Forwarder on your terminal, entering (if it is the first time) the following command:

```
$ edge-impulse-data-forwarder --clean
```

Next, enter your EI credentials, and choose your project, variables, and device names:

sej marcelo je Impulse d	ata forwarder v1.15.1
hat is your	user name or e-mail address (edgeimpulse.com)? rovai@wjrobot.org
What is your	passvord? [hidden]
Nebrocket:	use //repeterent edeptopulse con
APT -	bins // chudia adaptanijse con/vi
Incestion:	https://incestion.edgeinpulse.com
R] Connecti	ng to /dev/tty.usbmoden1101
[R] Serial i	s connected (34::8:5::18::8:E::3E::2:C)
Connecti	ng to vss://remote-mgnt.edgeinpulse.com
5] Connecte	d to vss://remote-mgmt.edgeimpulse.com
To which pro	ject do you want to connect this device? MJRoBot (Marcelo Rovai) / XIAO-ESP3253-Motion-Classification-Anom
-Detection	
R] Detectin	g data frequency
R] Detected	data frequency: SIHz
sensor axe	s detected (example values: [-0.15,-0.23,9.56]). What do you want to call them? Separate the names with ', are?
hat name do	you want to give this device? X140-FSP1753
Device "	XIAO-ESP32S3" is now connected to project "XIAO-ESP32S3-Hotion-Classification-Anomaly-Detection"
Go to ht	tps://studio.edgeimpulse.com/studio/226398/acquisition/training to build your machine learning model!

Go to your El Project and verify if the device is connected (the dot should be green):

These are devices that are connected to	o the Edge Impulse remote manageme	ent API, or have posted data to	o the ingestion SDK.		
IAME	ID	TYPE	SENSORS	REMOT	LAST SEEN
XIAO-ESP3253	34::8:5::18::8:E::3E::2:C	DATA_FORWARDER	Sensor with 3 axes (accX, acc	•	Today, 17:24:59

Data Collection

As discussed before, we should capture data from all four Transportation Classes. Imagine that you have a container with a built-in accelerometer:

Now imagine your container is on a boat, facing an angry ocean, on a truck, etc.:

- Maritime (pallets in boats)
- **Terrestrial** (palettes in a Truck or Train)
- Lift (Palettes being handled by
- Idle (Palettes in Storage houses)

Below is one sample (raw data) of 10 seconds:

You can capture, for example, 2 minutes (twelve samples of 10 seconds each) for the four classes. Using the "3 dots" after each one of the samples, select 2, moving them for the Test set (or use the automatic Train/Test Split tool on the Danger Zone of Dashboard tab). Below are the result datasets:

EDGE IMPULSE		MJRoBot (Marcelo R	ovai) / Xi	AD-ESP32	3 Motion-Classification-Anomaly-Detection	
ashboard evices	Dataset Data explorer Data sour	tes CSV Wittand	7		Collect data	1.4
ata acquisition	8m 0s 😏	85% / 15%	0	U		
npulse design	Dataset		÷	<u> </u>	Device ③ XIAO-(SP3253	
Create impulse Spectral features	Training (H) Test (7)		т	8 (Label	Sample length (ms.)
Cassifier	SAMPLE NAME LABEL	ADDED	LENGTH		maritime	10000
Anomaly detection	terrestrial.json.40cm terrestrial	Today, 16:32:14	105	1	Sensor	Frequency
ON Tuner	terrestrial.json.40cm terrestrial	Today, 16:32:13	10s	1	Sensor with 3 axes (accX, accY, accZ)	v 51Hz v
etrain model	lift.json.40cnmahj.ing lift	Today, 16:32:13	10s	1		
ve classification	lift.json.40cnmahj.ing in	Today, 16:32:13	105	1		Start sampling
fodel testing	terrestrial.json.40cm terrestrial	Today, 16:32:12	105	1		
rsioning	terrestrial.json.40cml terrestrial	Today, 16:32:12	105	1	maritime.ison.40co0vgt.ingest	i ion-7f6f59c885-v2mip.s3
eployment	terrestrial.json.40cmk terrestrial	Today, 16:32:12	10s	1		
STARTED	maritime.json.40co0v maritime	Today, 16:32:11	105	1	Share & Jack	A LOUB A
ocumentation	idle.json.40cm9pfv.in idle	Today, 16:32:11	105	1	XYXV WA	
nums	lift.json.40cnq1hr.ing	Today, 16:32:11	105	1		
	lift.json.40cnq1hr.ing ut	Today, 16:32:11	105	1	-15 -20	
	idle.json.40cmdjis.ing ide	Today, 16:32:10	105	1	0 1040 2080 3120 4160	5200 6240 7280 8320 9360

Data Pre-Processing

The raw data type captured by the accelerometer is a "time series" and should be converted to "tabular data". We can do this conversion using a sliding window over the sample data. For example, in the below figure,

we can see 10 seconds of accelerometer data captured with a sample rate (SR) of 50Hz. A 2 seconds window will capture 300 data points (3 axis x 2 seconds x 50 samples). We will slide this window each 200ms, creating a larger dataset where each instance has 300 raw features.

You should use the best SR for your case, taking into consideration, Nyquist's theorem, which states that a periodic signal must be sampled at more than twice the highest frequency component of the signal.

Data preprocessing is a challenging area for embedded machine learning. Still, Edge Impulse helps overcome this with its digital signal processing (DSP) preprocessing step and, more specifically, the Spectral Features.

On the Studio, this dataset will be the input of a Spectral Analysis block, which is excellent for analyzing repetitive motion, such as data from accelerometers. This block will perform a DSP (Digital Signal Processing), extracting features such as "FFT" or "Wavelets". In the most common case, FFT. The **Time Domain Statistical features** per axis/channel are:

- RMS
- Skewness
- Kurtosis,

And the **Frequency Domain Spectral features** per axis/channel are:

- Spectral Power
- Skewness
- Kurtosis

So, for example, for an FFT length of 32 points, the resulting output of the Spectral Analysis Block will be 21 features per axis (a total of 63 features).

Those 63 features will be the Input Tensor of a Neural Network Classifier and the Anomaly Detection model (K-Means).

You can learn more by digging into the tutorial TinyML under the hood: Spectral Analysis.

Model Design

Our classifier will be a Dense Neural Network (DNN) that will have 63 neurons on its input layer, two hidden layers with 20 and 10 neurons, and an output layer with four neurons (one per each class), as shown here:

Impulse Design

An impulse takes raw data uses signal processing to extract features and then uses a learning block to classify new data.

We also take advantage of a second model, the K-means, that can be used for Anomaly Detection. If we imagine that we could have our known classes as clusters, any sample that could not fit on that could be an outlier, an anomaly (for example, a container rolling out of a ship on the ocean).

For that, we can use the same input tensor that goes to the NN Classifier as the input of a K-means model:

Below is our final Impulse design:

Generating features

At this point in our project, we have defined the pre-processing method and the model designed. Now it is time to have the job done. First, let's take the raw data (time-series type) and convert it to tabular data. Go to the Spectral Features tab, and select Save Parameters:

At the top menu, select Generate Features option and Generate Features button. Each of our 2 seconds window data will be converted into one data point of 63 features each.

The Feature Explorer will show those data in 2D using UMAP. Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualization similarly to t-SNE but also for general non-linear dimension reduction.

The visualization makes it possible to verify that the classes present an excellent separation, which indicates that the classifier should work well.

Feature importance ③	All data 👻		
acc2 RMS		E-mail and a second	
the second se		Feature explorer	
accZ Spectral Power 0.78 - 2.34 Hz		12076	
accK RMS		 Idla 	
annes Sal		- Ide	
actif Spectral Power 10.16 - 11.72 Hz			
the second se		maritime	
actify Spectral Power 17.97 - 19.53 Hz		terrestrial	
accX Spectral Power 7.03 - 8.59 Hz			
accy RMS			
The second secon			
accK Spectral Power 0.78 - 2.34 Hz			(Constants)
and the second s			Construction of the local division of the lo
aciZ Spectral Power 2.34 - 3.91 Hz			
NAMES AND A CONTRACT OF CARD			
activ Spectral Power 3.91 - 5.47 Hz			
The second se		0	() · · · · · · · · · · · · · · · · · ·
accY Spectral Power 11.72 - 13.28 Hz		00	
the second second second			
actr spectral Power 8.59 - 10.16 Hz			
acer Spectral Power 0.78 - 2.54 Hz			
PCD Spectral POWER 14.84 - 35.4110			
the second s			
accy spectral Power 16:41 - 37,97 Hz			

Optionally you can analyze how important each one of the features is for one class compared with other classes.

Training

Our model has four layers, as shown below:

As hyperparameters, we will use a Learning Rate of 0.005 and 20% of data for validation for 30 epochs. After training, we can see that the accuracy is 97%.

rear at recentry seconds		- <u>1</u>	Model		- 63	adel version: @	Quartised traffice
Training settings			Last training p	erformance paintee	e 341)		
Number of training cycles (\$) 30			97.0	ACY 96	e	0.28	
Learning rate (0)	0.0005		Confusion mat	724 (publission larg			
Advanced training settings		8 9	1	10.4	- Lare	and the second	TRANSFERRE.
Validation set sile @	30		101.0	105	19		25
			MARTINE.	19	100	8.15	
Not canonalization before sustaining skilling			71342279146	1.04	174	1.18	81.05
Auto-balance dataset (D)			//#120666	2.10	1.07	117	1.0
Profile and model @	2		Data explorer	Chier growing has			
Neural network architecture	Restures)		the contract of the contr	reati prest		all man	
Dense Jayer (20	(manent)			-	1	20 C	
Dense løyer pro	(autor)			6. 24	-	13	5
Add art ends	i layer			- Colorest	2.20	offices.	
Output layer (4	(dassed)		On-device per	ormance @			
			- Herr	Artises have	PEAK PARE OF	Martin Con	FLASH USAGE

And for Anomaly Detection, we should choose the suggested features that are precisely the most important ones found in the Feature Extraction. The number of clusters will be 32 as suggested by the Studio:

Testing

Using 20% of the data left behind during the data capture phase, we can verify how our model will behave with unknown data; if not 100% (what is expected), the result was not that good (8%), mainly due to the terrestrial class. Once we have four classes (which output should add 1.0), we can set up a lower threshold for a class to be considered valid (for example, 0.4):

	1047	LIFT.	MARTINE	TERRETRIAL	ANOMALY	UNCERTAIN				condition futures	
1015	100%	dw	0%	0%	2%	-0%	al tops which is			_	
URT.	DR.	187%	- 14	0%	2%	-016		A COMPANY	HEALESCHICK, L. S.S.	-	
MARITIME	0%	20%	182%	0%	6.16	3.7%	•	-	(1000)	Rainway and a	(66)
TERRITORIA	Die	19	- 24	24	2%	100%		The feet manufact strategy		The second in the second secon	
ANDMALY									signed to end to a site away site	Carrier and Carrier and Carrier	
FT SCORE	11.00	1.00	0.05	0.00	0.00					17.54 of 100 and	
idie - con idie - con idie - con multime multime terrestru	torrect Softest Softest Derestest Softestest					1					
						A.	14 million and 14	1 Calendari		1222	

Now, the Test accuracy will go up to 97%.

96.8	9%						Test data					Classify all	а
	104.0	1077	MARTINE	TERRETTRIAL	ANDREST	UNITETAN							
101.0	1015		09	.0%	OR .	Distant	Set the 'expected o	utcome' for	each samp	ie to the desi	red outcom	e to automatically s	score
UIT	CN.	100%	- 2%	0%	08.	UN	the impulse.						
MARITINE.	29	2.2%	92.8%	0%	6.0%	DN .							
TERRESTRIAL	0%	28	2.48	4194	19.	4.8%	SAMPLE NAME	(1094641E	TENEDH	ANDMALY	ACCURA_	ACTULT	
ANOMALY						14 M	idle jton.40cmdji	idie	105	-0.35	100%	AT idle	Ē
FI SCORE	1.05	6.99	8.96	0.95	8.00								
Feature explo	rer 🕲						lift.json.40cnq1h	Rt	105	-0.43	100%	41 Mt	i
o idie - corre-	t,						terrestrial json 4	terrestrial	105	-0.18	92%	39 terrestruit,	E
 lift - correct manitime - terrestrial - 	t correct correct	28					idie json.40cmdji	idle	105	-0.36	100%	41 idle	j.
 maritime - terrestrial - 	incorrect incorrect	ag			4	9	maritime.json.40	maritime	10s	-0.29	97%	41 maritime A	ŧ
		A	1	2			lift;json.40cnma	(IR)	106	-0.40	100%	41 5/1	
		944	- 3	6			maritime (son.40	maritime	105	-0.05	8295	36 maritime, S.	I

You should also use your device (which is still connected to the Studio) and perform some Live Classification.

Be aware that here you will capture real data with your device and upload it to the Studio, where an inference will be taken using the trained model (But the model is NOT in your device).

Deploy

Now it is time for magic^{*}! The Studio will package all the needed libraries, preprocessing functions, and trained models, downloading them to your computer. You should select the option Arduino Library and at the bottom, select Quantized (Int8) and Build. A Zip file will be created and downloaded to your computer.

On your Arduino IDE, go to the Sketch tab and select the option Add.ZIP Library and Choose the.zip file downloaded by the Studio:

Inference

Now it is time for a real test. We will make inferences wholly disconnected from the Studio. Let's change one of the code examples created when you deploy the Arduino Library.

In your Arduino IDE, go to File/Examples tab and look for your project, and on examples, select nano_ble_sense_accelerometer:

Of course, this is not your board, but we can have the code working with only a few changes.

For example, at the beginning of the code, you have the library related to Arduino Sense IMU:

Change the "includes" portion with the code related to the IMU:

Change the Constant Defines

On the setup function, initiate the IMU, set the offset values and range:

```
// initialize device
Serial.println("Initializing I2C devices...");
Wire.begin();
imu.initialize();
delay(10);
//Set MCU 6050 OffSet Calibration
imu.setXAccelOffset(-4732);
imu.setYAccelOffset(4703);
imu.setZAccelOffset(8867);
imu.setXGyroOffset(61);
imu.setYGyroOffset(-73);
imu.setZGyroOffset(35);
imu.setFullScaleAccelRange(ACC_RANGE);
```

At the loop function, the buffers: buffer[ix], buffer[ix + 1], and buffer[ix + 2] will receive the 3-axis data captured by the accelerometer. On the original code, you have the line:

```
IMU.readAcceleration(buffer[ix], buffer[ix + 1], buffer[ix + 2]);
```

Change it with this block of code:

```
imu.getAcceleration(&ax, &ay, &az);
buffer[ix + 0] = ax;
buffer[ix + 1] = ay;
buffer[ix + 2] = az;
```

You should change the order of the following two blocks of code. First, you make the conversion to raw data to "Meters per squared second (ms2)", followed by the test regarding the maximum acceptance range (that here is in ms2, but on Arduino, was in Gs):

```
buffer[ix + 0] *= CONVERT_G_T0_MS2;
buffer[ix + 1] *= CONVERT_G_T0_MS2;
buffer[ix + 2] *= CONVERT_G_T0_MS2;
for (int i = 0; i < 3; i++) {
    if (fabs(buffer[ix + i]) > MAX_ACCEPTED_RANGE) {
        buffer[ix + i] = ei_get_sign(buffer[ix + i]) * MAX_ACCEPTED_RANGE;
        }
}
```

And that is it! You can now upload the code to your device and proceed with the inferences. The complete code is available on the project's GitHub.

If you get an error trying to upload the code to the XIAO ESP32S3 as below, you should switch off ESP NN acceleration.

To do that, locate ei_classifier_config.h in exported Arduino library folder: /scr/edge-impulse-sdk/classifier/:

•••	C / Cassiner		00 :=	u	1 m · U ·	0.01. 01.4	
Sevel Cloud Drive Documents Desktop Shared Severites Unotifies	toraries (↓)	TJpg_Decoder-master Ubg2 VLSSLX Wack-2022-Inself-calor_inferencing Wack-2022-Inself-calor_inferencing XAd_BLE_SenseKeyWord_Spotting_Inferencing XAd_BLE_SenseVarWord_Spotting_Inferencing XAd_D_SELE_SenseVarWord_VarSelf-calor_VWS_Inferencing XAd_D_SES252_CMM_FoldstarWordParkencing XAd_SSSS25_CMM_FoldstarWordParkencing XAd_SSSS25_CMM_FoldstarWordParkencing	examples Ibrary properties and		edge-impulse-sdk) model-parameters) title-model > () XAQ-(SP_erencing.h	gtignore mbedgnore classifier cnake CMSIS create-arbuno-library.st dip UCENSE UCENSE UCENSE UCENSE UCENSE	el_aligned_maloc.h el_eldeanlifec_condp.h el_classifier_smooth.h el_classifier_smooth.h el_classifier_smooth.h el_ell_endel_types.h el_ell_endel_types.h el_endel_types.h el_endel_typ

Locate the line with #define EI_CLASSIFIER_TFLITE_ENABLE_ESP_NN 1, and change it from 1 to 0:

Now you should try your movements, seeing the result of the inference of each class on the images:

	/dev/cu.usbmodem1101		
		Send	1
09:26:08.258	-> Predictions (DSP: 7 ms., Classification: 0 ms., Anon	naly: 0	Γ.
09:26:08.258	-> idle: 0.98828		
09:26:08.258	-> lift: 0.00781		
09:26:08.258	-> maritime: 0.00000		
09:26:08.258	-> terrestrial: 0.00000		
09:26:08.258	-> anomaly score: -0.273		
09:26:08.258	->		
09:26:08.258	-> Starting inferencing in 2 seconds		
09:26:10.230	-> Sampling		
09:26:12.270	-> Predictions (DSP: 7 ms., Classification: 0 ms., Anon	naly: 0	
09:26:12.270	-> idle: 0.99219		
09:26:12.270	-> lift: 0.00391		
09:26:12.270	-> maritime: 0.00000		
09:26:12.270	-> terrestrial: 0.00391		
09:26:12.270	-> anomaly score: -0.345		
09:26:12.270	->		
09:26:12.270	-> Starting inferencing in 2 seconds		1
09:26:14.262	-> Sampling		
			8
-		-	
🖸 Autoscroll 💟 Si	how timestamp Both NL & CR 🧿 115200 baud 📴 C	lear output	(

•••	/dev/cu.usbmodem1101
	Send
09:27:36.424	-> Predictions (DSP: 7 ms., Classification: 0 ms., Anomaly: 0
09:27:36.424	-> idle: 0.00000
09:27:36.424	-> lift: 0.98828
09:27:36.424	-> maritime: 0.01172
09:27:36.424	-> terrestrial: 0.00000
09:27:36.424	-> anomaly score: -0.093
09:27:36.424	->
09:27:36.424	-> Starting inferencing in 2 seconds
09:27:38.432	-> Sampling
09:27:40.446	-> Predictions (DSP: 7 ms., Classification: 0 ms., Anomaly: 0
09:27:40.446	-> idle: 0.00000
09:27:40.446	-> lift: 0.98828
09:27:40.446	-> maritime: 0.01172
09:27:40.446	-> terrestrial: 0.00000
09:27:40.446	-> anomaly score: -0.203
09:27:40.446	->
09:27:40.446	-> Starting inferencing in 2 seconds
09:27:42.442	-> Sampling
🗸 Autoscroll 🔽 Si	now timestamp Both NL & CR 🕤 115200 baud 🕤 Clear output

• • •	/dev/cu.usbmodem1101	
	Send	
09:28:30.557 ->	Sampling	
09:28:32.559 ->	Predictions (DSP: 7 ms., Classification: 0 ms., Anomaly: 0	
09:28:32.559 ->	idle: 0.14844	
09:28:32.559 ->	lift: 0.18359	
09:28:32.559 ->	maritime: 0.20312	
09:28:32.559 ->	terrestrial: 0.46484	
09:28:32.559 ->	anomaly score: -0.123	
09:28:32.559 ->		
09:28:32.559 ->	Starting inferencing in 2 seconds	
09:28:34.562 ->	Sampling	
09:28:36.567 ->	Predictions (DSP: 7 ms., Classification: 0 ms., Anomaly: 0	
09:28:36.567 ->	idle: 0.16016	
09:28:36.567 ->	lift: 0.17969	
09:28:36.567 ->	maritime: 0.19922	
09:28:36.567 ->	terrestrial: 0.45703	
09:28:36.567 ->	anomaly score: -0.107	
09:28:36.567 ->		
09:28:36.567 ->	Starting inferencing in 2 seconds	Torroctri
		Terrestri
🗸 Autoscroll 🔽 Show	imestamp Both NL & CR 💿 115200 baud 📀 Clear output	

• • •	/dev/cu.usbmodem1101
	Send
09:29:04.641 ->	> Predictions (DSP: 7 ms., Classification: 0 ms., Anomaly: 0
9:29:04.641 ->	> idle: 0.00000
9:29:04.641 ->	> lift: 0.02734
9:29:04.641 ->	> maritime: 0.96875
9:29:04.641 ->	terrestrial: 0.00391
9:29:04.641 ->	anomaly score: 0.989
9:29:04.641 ->	,
9:29:04.641 ->	Starting inferencing in 2 seconds
9:29:06.628 ->	> Sampling
9:29:08.690 ->	> Predictions (DSP: 7 ms., Classification: 0 ms., Anomaly: 0
9:29:08.690 ->	> idle: 0.00000
9:29:08.690 ->	> lift: 0.03906
9:29:08.690 ->	> maritime: 0.92578
9:29:08.690 ->	terrestrial: 0.03516
9:29:08.690 ->	> anomaly score: 0.697
9:29:08.690 ->	•
9:29:08.690 ->	Starting inferencing in 2 seconds
9:29:10.706 ->	> Sampling
Autoscroll 🗸 Show	timestamp Both NL & CR 😒 115200 baud 😒 Clear output

• • •	/dev/cu.usbmodem1101
	Send
9:30:30.876 ->	Sampling
9:30:32.872 ->	Predictions (DSP: 7 ms., Classification: 0 ms., Anomaly: 0
9:30:32.872 ->	idle: 0.00000
9:30:32.872 ->	lift: 0.05078
9:30:32.872 ->	maritime: 0.94922
9:30:32.872 ->	terrestrial: 0.00000
9:30:32.872 ->	anomaly score: 1.736
9:30:32.872 ->	
9:30:32.872 ->	Starting inferencing in 2 seconds
9:30:34.895 ->	Sampling
9:30:36.881 ->	Predictions (DSP: 7 ms., Classification: 0 ms., Anomaly: 0
9:30:36.881 ->	idle: 0.00000
9:30:36.881 ->	lift: 0.07031
9:30:36.881 ->	maritime: 0.92578
9:30:36.881 ->	terrestrial: 0.00391
9:30:36.881 ->	anomaly score: 3.605
9:30:36.881 ->	
9:30:36.881 ->	Starting inferencing in 2 seconds
🗸 Autoscroll 🗹 Show ti	mestamp Both NL & CR 💿 115200 baud 💿 Clear output

Conclusion

The Seeed XIAO ESP32S is a giant tiny device! It is powerful, not expensive, low power, and suitable for use on the most common embedded machine learning applications. Even though Edge Impulse does not officially support XIAO BLE Sense, we realized it could be easily connected with the Studio.

Regarding the IMU, this project used the low-cost MPU6050 but could also use other IMUs, for example, the LCM20600 (6-axis), which is part of the Seeed Grove - IMU 9DOF (Icm20600+AK09918).

One advantage of the last device is that it has integrated a Grove connector, which can be helpful in teaching in the case you are using the XIAO with an extension board, as shown below:

You can follow the instruction here to connect the IMU with the MCU. Only note that for using the Grove ICM20600 Accelerometer, it is essential to update the files **I2Cdev.cpp** and **I2Cdev.h** that you will download from the library provided by Seeed Studio. For that, replace both files from this link.

You can find on the GitHub project a sketch for testing the IMU:

accelerometer_test.ino.

On the project's GitHub repository, you will find the last version of all codes and other docs: XIAO-ESP32S3 - IMU.

Knowing more

If you want to learn more about Embedded Machine Learning (TinyML), please see these references:

- "TinyML Machine Learning for Embedding Devices" UNIFEI
- "Professional Certificate in Tiny Machine Learning (TinyML)" edX/Harvard
- "Introduction to Embedded Machine Learning" Coursera/Edge Impulse
- "Computer Vision with Embedded Machine Learning" Coursera/Edge Impulse
- "Deep Learning with Python" by François Chollet
- "TinyML" by Pete Warden, Daniel Situnayake
- "TinyML Cookbook" by Gian Marco Iodice
- "AI at the Edge" by Daniel Situnayake, Jenny Plunkett

On the TinyML4D website, You can find lots of educational materials on TinyML. They are all free and open-source for educational uses – we ask that if you use the material, please cite them! TinyML4D is an initiative to make TinyML education available to everyone globally.

That's all, folks!

As always, I hope this project can help others find their way into the exciting world of AI!

link: MJRoBot.org

Greetings from the south of the world!

See you at my next project!

Thank you

Marcelo