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● Forced Alignment estimates 

timings from <Audio, Text>

● Well-established technique

● Alignments trained from a flat 

start (no prior acoustic model)
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Embeddings
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Feature extraction Feature Vectors in an 
N-dimensional 

embedding

N-dim
output
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Each cluster is a 
different word
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● Classification and streaming accuracy

● 440 keywords

● 22 Languages

● 5 random training samples per keyword

Evaluation



5-shot Keyword Spotting Results

BETTER

● Classification performance shown as 

ROC curves

● High top-1 accuracy on keywords unseen 

by the embedding model with only five 

training examples

● Avg F1@threshold 0.8 = 0.75

ROC: Receiver Operating Characteristic
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9 languages 
seen by the 
embedding 

model

13 languages 
not seen by the 

embedding 
model

BETTER



Monolingual vs Multilingual Embedding

Six Monolingual Embedding Models Multilingual Embedding Model

Performance 
improves across 

all languages 
with no 

additional data
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Streaming Accuracy Tests Across 22 Languages

● Wakeword scenario: Avg TPR 87.4%

BETTER



Extracting keywords with audio context

1-second silence-padded extraction 1-second context-padded extraction

Keyword in Common Voice sentence

Improves 
keyword search 
accuracy



Streaming Accuracy on Keyword Search

BETTER

BETTER

Avg TPR: 
77.2%

Embedding trained on silence + 
context-padded keywords

Embedding trained only on 
silence-padded keywords



Broadcast Radio Monitoring

● Problem Description: Create a Covid-19 keyword 
spotting system to monitor public radio broadcasts 
for the Uganda Ministry of Health

● Impact Goals: Estimate Covid spread, vaccine 
sentiment & info, other topics (crop disease, …)

● Domain experts:
○ Dr. Joyce Nabende, Jonathan Mukiibi (Makerere 

AI Lab)
○ Dr. Josh Meyer (Mozilla Foundation Machine 

Learning Fellow, Coqui.io)



Broadcast Radio Monitoring in Luganda
Potential for social impact

● Uganda Ministry of Health can gather 

real-time updates on health, safety, food 

security

Excerpt from Menon et. al. Feature exploration for almost zero-resource ASR-free 
keyword spotting using a multilingual bottleneck extractor and correspondence 
autoencoders. INTERSPEECH 2019

https://radio.unglobalpulse.net/uganda/



Radio Search: Evaluation

● Assembled streaming wavs from transcribed radio data

○ Interspersed with non-target radio clips

Radio clips containing target keywords [“Covid”, etc]

Radio clips not containing keywords
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Under review: https://openreview.net/forum?id=c20jiJ5K2H

● 50+ languages
● Collectively spoken by over 5 Billion people
● Regular updates with more data
● Includes forced alignments for all of 

Common Voice
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Paper available on OpenReview (to appear in NeurIPS 2021 Datasets track):

https://openreview.net/forum?id=c20jiJ5K2H

Dataset will be released publicly at NeurIPS 2021 this December

https://openreview.net/forum?id=c20jiJ5K2H


Conclusions

● More data always helps: KWS performance improves using data from other 
languages

● Context helps keyword search without impacting wakeword performance
● Crowdsourced data enables large-scale evaluation (many languages)

Code, models, & colabs:

github.com/harvard-edge/multilingual_kws

https://github.com/harvard-edge/multilingual_kws

