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Internet of Things (IoT)
“The IoT can be viewed as a global infrastructure 
for the information society, enabling advanced 
services by interconnecting (physical and virtual) 
things based on existing and evolving interoperable 
information and communication technologies 
(ICT).”— Recommendation ITU-T Y.2060 

https://www.itu.int/rec/T-REC-Y.2060-201206-I


Device — ITU definition 
“A device is a piece of equipment with the mandatory 
capabilities of communication and optional 
capabilities of sensing, actuation, data capture, data 
storage and data processing. Some devices also 
execute operations based on information received 
from the information and communication networks.” 
— Recommendation ITU-T Y.2060 
 

https://www.itu.int/rec/T-REC-Y.2060-201206-I


Fundamental characteristics — ITU
Enormous scale: The number of devices that need to 
be managed and that communicate with each other 
will be at least an order of magnitude larger than the 
devices connected to the current Internet. The ratio of 
communication triggered by devices as compared to 
communication triggered by humans will noticeably 
shift towards device-triggered communication. 





 One to many to any



2020 statistics



2020 statistics
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Worldwide distribution

Credit: https://www.thingful.net

https://www.thingful.net
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Worldwide distribution

Credit: https://www.thingful.net

https://www.thingful.net
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Worldwide distribution

Credit: https://www.thingful.net

https://www.thingful.net
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IoT and SDG



14

IoT and SDG
➤ SDG 2: ZERO HUNGER:

An estimated 821 million people were undernourished in 2017. Annual cereal 
production will need to rise to about 3 billion tonnes and annual meat 
production will need to rise by over 200 million tonnes to reach 470 million 
tonnes to feed 9.1 billion people by 2050.

➤ SDG 13 & 15: CLIMATE ACTION and LIFE ON LAND:

Given current concentrations and on-going emissions of greenhouse gases, it is 
likely that by the end of this century, the increase in global temperature will 
exceed 1.5°C. Global emissions of carbon dioxide (CO2) have increased by 
almost 50 per cent since 1990



Drivers and obstacles for IoT 

↑ Low cost of devices (MCU and sensors)
↑ Wireless standards

↓ Lack of Internet connectivity
↓ Lack of IoT infrastructure
↓ Complex ecosystem



Device — ITU definition 
“A device is a piece of equipment with the mandatory 
capabilities of communication and optional 
capabilities of sensing, actuation, data capture, data 
storage and data processing. Some devices also 
execute operations based on information received 
from the information and communication networks.” 
— Recommendation ITU-T Y.2060 
 

https://www.itu.int/rec/T-REC-Y.2060-201206-I
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Classical IoT Architecture

 
Perception 

Network

Application
Physical
World

People

Services 

“Things”

5 Quintillion bytes of data produced every day by IoT, but less than 1% is used. HBR/CISCO 
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What is Tiny Machine Learning (TinyML)?
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What is Tiny Machine Learning (TinyML)?

TinyML
Fastest-growing field of ML
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What is Tiny Machine Learning (TinyML)?

TinyML
Fastest-growing field of ML

Algorithms, hardware, software

Low power consumption

On-device sensor analytics

Always-on ML

Battery-operated
29
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 EdgeML  (P )

Image Recognition 

Autonomous Car Control
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 EdgeML  (P )                      TinyML (P ) 

KeyWord Spotting

Motion & biometric

Environmental Control

Image Spot Image Recognition 

Autonomous Car Control
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IoT - Architecture

IoT
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Data AI

Endpoints devices   Data + AI   Value



36



37



38

ECG Sensor

Atrial Fibrilation Detecion with TinyML: 
https://youtu.be/y5gMA3tBZmY

https://youtu.be/y5gMA3tBZmY
https://youtu.be/y5gMA3tBZmY
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ML at microprocessor level avoid issues as 
Latency, Power Consuming, and Security

ML (AI) at the “edge of the edge”  TinyML 
TinyML enables 

machine intelligence 
right next to the 
physical world

“Alexa”
“Wake-up ”

ARM Cortex-M4

Arduino 
Nano BLE Sense
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Echo-Dot Teardown vs Arduino Nano BLE Sense

Nordic nRF52840-M4
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Hardware

Software
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Rpi-Pico 
(Cortex-M0+)

Arduino Nano
(Cortex-M4)

Arduino Pro
(Cortex-M7)

RaspberryPi     SmartPhone
(Cortex-A)

Jetson Nano
(Cortex-A + GPU)

Anomaly Detection
Sensor Classification

20 KB

KeyWord Spotting
Audio Classification

50 KB

Image  
Classification

250 KB+

Object Detection
Complex Voice 

Processing
1 MB+

Video  
Classification

2 MB+

Source: Edge Impulse

TinyML

EdgeMLHardware
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(TFL Micro)

Software
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TinyML Application
Examples
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More than just voice

• Security (Broken Glass)
• Industry (Anomaly Detection)
• Medical (Snore, Toss)
• Nature   (Bee, Mosquito sound)
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Personal Assistant
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Personal Assistant
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“Cascade” Detection: multi-stage model 
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https://mjrobot.org/2021/01/27/building-an-intelligent-voice-assistant-from-scratch/

KeyWord Spotting (KWS) 

https://mjrobot.org/2021/01/27/building-an-intelligent-voice-assistant-from-scratch/
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Sound Image
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Digital Mic “Yes”

Obtains an input

16KHz / 16 bits
  Sample: [1s]

KeyWord Spotting (KWS) - Inference 
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Digital Mic “Yes”
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Obtains an input Pre-Process

16KHz / 16 bits
  Sample: [1s]

Output: Image
     [49, 40, 1]

KeyWord Spotting (KWS) - Inference 
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Digital Mic “Yes”
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Obtains an input Pre-Process Runs model

16KHz / 16 bits
  Sample: [1s]

Output: Image
     [49, 40, 1]

Output Dim [1, 4]
- Prob ‘Silence’
- Prob ‘Unknown’
- Prob ‘Yes’
- Prob ‘No’

KeyWord Spotting (KWS) - Inference 
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Digital Mic “Yes”
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C
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Obtains an input Pre-Process Runs model Post-Processes

16KHz / 16 bits
  Sample: [1s]

Output: Image
     [49, 40, 1]

Output Dim [1, 4]
- Prob ‘Silence’
- Prob ‘Unknown’
- Prob ‘Yes’
- Prob ‘No’

If Probability of 
YES is greater 

than 80%  
Take actions

KeyWord Spotting (KWS) - Inference 
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Digital Mic “Yes”
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Obtains an input Pre-Process Runs model Post-Processes
Make things 

happen

16KHz / 16 bits
  Sample: [1s]

Output: Image
     [49, 40, 1]

Output Dim [1, 4]
- Prob ‘Silence’
- Prob ‘Unknown’
- Prob ‘Yes’
- Prob ‘No’

If Probability of 
YES is greater 

than 80%  
Take actions

KeyWord Spotting (KWS) - Inference 
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Digital Mic “Yes
”
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r

Obtains an input Pre-Process Runs model postprocesses
Make things 

happen

16KHz / 16 
bits
  Sample: [1s]

Output: 
Image
     [49, 40, 1]

Output Dim [1, 4]
- Prob ‘Silence’
- Prob ‘Unknown’
- Prob ‘Yes’
- Prob ‘No’

If Probability 
of YES is 

greater than 
80%  
Take 

actions

KeyWord Spotting (KWS) - Model 
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KeyWord Spotting (KWS) – Create Model (Training) 

Digital Mic 

M
FC

C
 

Fe
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ur
e 

C
on

ve
rte

r

Obtains data Pre-Process

16KHz / 16 bits
  Sample: [1s]

Output: Image
     [49, 40, 1]
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KeyWord Spotting (KWS) – Create Model (Training) 

Digital Mic 

M
FC

C
 

Fe
at

ur
e 

C
on

ve
rte

r

Obtains data Pre-Process Train model Evaluate Model

16KHz / 16 bits
  Sample: [1s]

Output: Image
     [49, 40, 1]
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KeyWord Spotting (KWS) – Create Model (Training) 

Digital Mic 

M
FC

C
 

Fe
at

ur
e 

C
on

ve
rte

r

Obtains data Pre-Process Train model Evaluate Model Deploy

16KHz / 16 bits
  Sample: [1s]

Output: Image
     [49, 40, 1]
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Using the Internet of Things for Agricultural Monitoring
“We aim to deploy a variety of sensors for agricultural monitoring. One of the projects involves using accelerometer sensors to 
monitor activity levels in dairy cows with a view to determining when the cows are on heat or when they are sick.”

https://sites.google.com/site/cwamainadekut/research

Cow Monitoring

Kenia
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 Predict and classify common Elephant behavior

Aggressive

https://www.hackster.io/dhruvsheth_/eletect-tinyml-and-iot-based-smart-wildlife-tracker-c03e5a

https://www.hackster.io/dhruvsheth_/eletect-tinyml-and-iot-based-smart-wildlife-tracker-c03e5a
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Mechanical Stresses in Transport

Roll

Yaw

Pitch

Terrestrial 

Maritime Rail 
Fork-Lift 

Idle 



73

• Raw Data from sensor
375 Raw Features

• RMS 
• PSD 

Spectral 
Analysis

33 Features • Terrestrial
• Maritime
• Fork-Lift
• Rail
• Idle

Classes

NN 
Classifier

Sliding Window: 
80ms

Manual Feature
Extraction
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Ball Bearings

Accelerometer
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Anomaly Detection
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77Dataset: https://github.com/AI-Lab-Makerere/ibean/

Detecting Diseases in the Bean plants 
UGANDA

https://github.com/AI-Lab-Makerere/ibean/
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Forest Fire Detection

https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2
_Applications/Group_Projects-Final%20Reports/Projeto_final_Fire_detection/trabalho
_final_Fire_Detection.pdf

https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2_Applications/Group_Projects-Final%20Reports/Projeto_final_Fire_detection/trabalho_final_Fire_Detection.pdf
https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2_Applications/Group_Projects-Final%20Reports/Projeto_final_Fire_detection/trabalho_final_Fire_Detection.pdf
https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2_Applications/Group_Projects-Final%20Reports/Projeto_final_Fire_detection/trabalho_final_Fire_Detection.pdf
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Person Detection
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Person Detection

X

✔ .
Mask Detection

X

✔ .
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X✔ .

Person Detection
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person, 
no-person



83



84

TinyML Projects – UNIFEI / IESTI01

• Personal Trainer         [Docs]  [Video]

• Mask Detection                  [Docs]  [Video]

• Forest Fire Detection         [Docs]  [Video]

• Covid Detection (cough)    [Docs]  [Video]
• Seismic Detection         [Docs]  [Video]

https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2_Applications/Group_Projects-Final%20Reports/IESTI01_ProjetoFinal_PersonalTrainer.pdf
https://youtu.be/RxlHRyaRfBc
https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2_Applications/Group_Projects-Final%20Reports/relatorio_final_deteccao_de_mascara.pdf
https://youtu.be/jeRetSaqm1w
https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2_Applications/Group_Projects-Final%20Reports/Projeto_final_Fire_detection/trabalho_final_Fire_Detection.pdf
https://youtu.be/70ySBIPzvJk
https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2_Applications/Group_Projects-Final%20Reports/Project__Covid_19_Detection_by_Cough.pdf
https://youtu.be/7Lca8lfdKAI
https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1/blob/main/00_Curso_Folder/2_Applications/Group_Projects-Final%20Reports/RelatorioTinyML_TrabalhoFinal_1-Abalos.pdf
https://youtu.be/vswoWrOpC1s
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TinyML Projects – Select HW examples 

● Motion Recognition w/ RPi Pico                      [Docs]

● Gesture Recognition w/  Wio Terminal          [Docs]

● Coffee Disease w/ Seeed Maix Bit    [Video] [Docs] 

● Listening Temperature w/ Nano 33                [Docs]

https://www.hackster.io/mjrobot/tinyml-motion-recognition-using-raspberry-pi-pico-6b6071
https://www.hackster.io/mjrobot/tinyml-made-easy-gesture-recognition-ce13a5
https://youtu.be/fD3ygcMLItI
https://www.hackster.io/Yukio/coffee-disease-classification-with-ml-b0a3fc
https://www.hackster.io/mjrobot/listening-temperature-with-tinyml-7e1325


86

How to Train a ML Model?
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Collect 
Data

Preprocess
Data

Machine Learning Workflow
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Machine Learning Workflow
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Machine Learning Workflow
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences

Machine Learning Workflow (“What”)
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences

Machine Learning Workflow (“Where”)
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Collect 
Data
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Design a
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences

Machine Learning Workflow (“How”)
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From rule-based engineering to…           

Rule-based Code

Trial
 & 

Error
 

Write More Code
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Data-driven engineering           
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Make
Inferences

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model
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Data-driven engineering           

Training samples

Inference update

Camera
Audio

Vibration
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EI Studio - Embedded ML platform (“AutoML”)
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Case Study: Mechanical Stresses in Transport

Fork-Lift

Terrestrial 

Rail 
Maritime 

Idle 

Classes to study
• Maritime
• Terrestrial (or Rail)
• Lift
• Idle 
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences

Machine Learning Workflow
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x

Roll

Yaw

Pitch

?

Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences



103

Mechanical Stresses in Maritime Transport

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.html

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm


104

m/s2

Example: 10 seconds of accelerometer data,  captured with a sample rate: 62.5 Hz

ms
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• Raw Data from sensor

375 Raw Features

• RMS
• FFT 
• PSD 

Spectral 
Analysis

33 Features Classes

NN 
Classifier

Sliding Window: 80 ms

Manual Feature
Extraction

• Lift
• Terrestrial
• Maritime
• Idle



106

Spectral 
Analysis

NN 
Classifier

Collect 
Data

Preprocess
Data

Design a
Model

Model Design (NN Classifier)
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Model Design (NN Classifier)

• RMS
• FFT 
• PSD 

33 Features Classes

NN 
Classifier

• Lift
• Terrestrial
• Maritime
• Idle
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Model Design (DNN Classifier)

Preprocess
Data

Lift

Terrestrial

M
aritim

e

Iddle

33 Features

20 Neurons

10 Neurons
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Preprocess
Data

Model Design (DNN Classifier)

• RMS
• FFT 
• PSD 

33 Features Classes

Input 
Layer

• Lift
• Terrestrial
• Maritime
• Idle

Hidden 
Layer

1

Hidden 
Layer

2

Output 
Layer
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Preprocess
Data

units = 33

Model Design (DNN Classifier)

• RMS
• FFT 
• PSD 

33 Features Classes

Input 
Layer

• Lift
• Terrestrial
• Maritime
• Idle

Hidden 
Layer

1

Hidden 
Layer

2

Output 
Layer
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Spectral 
Analysis

NN 
Classifier

Train, Evaluate, Convert, Deploy the Model 

Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences

Train, Evaluate, Convert, Deploy the Model 
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Motion Classification

circle

lif
t 

(u
p

-d
o

w
n

)

terrestrial (left-right)

maritime (zig-zag, etc.)

Transportation Classes:

• lift (up-down)
• terrestrial (left-right)
• maritime (zig-zag, etc.)
• idle
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Motion Classification

circle

Transportation Classes
• lift (up-down)
• terrestrial (left-right)
• maritime (zig-zag, etc.)
• idle

Data: collect & test using 
accelerometer as sensor
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• Pre-Processing Data
• Design a Model
• Train a Model
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Sensor - IMU (Inertial Measurement Unit)
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• Pre-Processing Data
• Design a Model
• Train a Model
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Depending on your 

mobile OS version 

and/or your Browser, 

could be necessary to 

give access to device 

IMU sensor
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Collect 
Data
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Collect 
Data



127

Original DatasetCollect 
Data
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Original Dataset

Training Set Test SetCollect 
Data
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Original Dataset

Training Set Test Set

Training Set Test SetValidation SetCollect 
Data
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Original Dataset

Training Set Test Set

Training Set

Machine Learning 
Algorithm

Training, 
tuning, 

evaluation

Test SetValidation SetCollect 
Data
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Original Dataset

Training Set Test Set

Training Set

Machine Learning 
Algorithm

Final Model

Training, 
tuning, 

evaluation

Test SetValidation Set

Final Performance 
Estimate

Collect 
Data
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• Pre-Processing Data
• Design a Model
• Train a Model
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Spectral 
Analysis

NN 
Classifier

Classes

• Lift
• Terrestrial
• Maritime
• Idle
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Preprocess
Data

375 Raw Features

RMS
FFT 
PSD 

33 Processed Features
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Preprocess
Data
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Preprocess
DataDesign a

Model

EPOCHS

Lr
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Preprocess
Data

EPOCHS

Lr

Train a
Model
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Train a
Model
Evaluate
Optimize
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• Pre-Processing Data
• Design a Model
• Train a Model
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Train a
Model

Evaluate
Optimize
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• Pre-Processing Data
• Design a Model
• Train a Model
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Convert
Model

Deploy
Model
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Make
Inferences
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Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences

Motion Classification - Summary

Spectral 
Analysis

NN 
Classifier
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What AI really is?
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Data

AI starts with … Data, lot of data (Big Data)

✔ Low storage cost & capacity
✔ High Performance & Low cost 
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Data

Data   Storage
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Data

Data   Processing  
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Artificial Intelligence – AI Timeline

1951: Claude Shannon's 
maze-solving robots

1955: Arthur 
Samuel's Checkers, 
the world's first 
self-learning 
program

https://en.wikipedia.org/wiki/Timeline_of_artificial_intelligence

AI Winter
Many false starts and 
dead-ends leave AI 
out in the cold 

Alex
Net,

 G
ANs, 

GPT
-3

A
I

https://en.wikipedia.org/wiki/Timeline_of_artificial_intelligence
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AI   Machine Learning (ML)

 Computer OutputsInputs
Program

Traditional Programming

 Computer ProgramInputs
Outputs

Machine Learning
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AI   Machine Learning (ML)

 Computer OutputsInputs
Program

Traditional Programming

 Computer ProgramInputs
Outputs

Machine Learning

Car Sensors

Car Actuators
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Source Image: https://towardsdatascience.com/an-introduction-to-deep-learning-af63448c122c

Deep Learning: Subset of Machine Learning in which 
multilayered neural networks learn from vast amounts of data

NO
DE

AI   Deep Learning (DL)

https://towardsdatascience.com/an-introduction-to-deep-learning-af63448c122c
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NODE
Neuron

In n

In 2
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Out
Out

Out

Out

Out

In n

In 2

In 1

Out

Out

Out
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w
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w2
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b

Σ f(x)
y

f(x)  🡺 Activation Function

Neuron (Perceptron) 

Parameters 
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Artificial Neural Network 

(146, 134, 3)
RGB

CNN (Layer 1)

146  * 134 * 3 = 57,486 pixels

[ 227, 228, 227… 124, 119, 121]
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Image Classification

https://www.hackster.io/mjrobot/exploring-ia-at-the-edge-97588d

https://www.hackster.io/mjrobot/exploring-ia-at-the-edge-97588d
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Photos Live Video

Object Detection

https://www.hackster.io/mjrobot/exploring-ia-at-the-edge-97588d

https://www.hackster.io/mjrobot/exploring-ia-at-the-edge-97588d
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Pose Estimation 

https://www.hackster.io/mjrobot/exploring-ia-at-the-edge-97588d

https://www.hackster.io/mjrobot/exploring-ia-at-the-edge-97588d
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General AI does not exist (yet)
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Dedicated ML Applications
• Image Classification
•Object Detection 
•Pose Estimation
•Voice Recognition
•Gesture Recognition
•Anomaly Detection
•Natural Language Processing (NLP)
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Responsible AI
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Learning more about Embedded ML
• Deploy machine learning models on mobile and IoT devices:  

• https://www.tensorflow.org/lite

• The Embedded Machine Learning Revolution:
• https://www.wevolver.com/article/the-embedded-machine-learning-revolution

-the-basics-you-need-to-know

• "Listening Temperature" with TinyML
• https://www.hackster.io/mjrobot/listening-temperature-with-tinyml-7e1325

• Introduction to Embedded Machine Learning (Coursera Course)
• https://www.coursera.org/learn/introduction-to-embedded-machine-learning

• Exploring AI at the Edge!
• https://towardsdatascience.com/exploring-ia-at-the-edge-b30a550456db

• TinyML - Motion Recognition Using Raspberry Pi Pico
• https://www.hackster.io/mjrobot/tinyml-motion-recognition-using-raspberry-pi

-pico-6b6071

Twitter: @mjrovai

instructables.com/member/mjrovai

github.com/Mjrovai

hackster.io/mjrobot

medium.com/@rovai

MJRoBot.org

https://www.tensorflow.org/lite
https://www.wevolver.com/article/the-embedded-machine-learning-revolution-the-basics-you-need-to-know
https://www.wevolver.com/article/the-embedded-machine-learning-revolution-the-basics-you-need-to-know
https://www.hackster.io/mjrobot/listening-temperature-with-tinyml-7e1325
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://towardsdatascience.com/exploring-ia-at-the-edge-b30a550456db
https://www.hackster.io/mjrobot/tinyml-motion-recognition-using-raspberry-pi-pico-6b6071
https://www.hackster.io/mjrobot/tinyml-motion-recognition-using-raspberry-pi-pico-6b6071
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Thanks
And stay safe!


